Source code for bumps.dream.bounds

"""
Bounds handling.

Use bounds(low, high, style) to create a bounds handling object.  This
function operates on a point x, transforming it so that all dimensions
are within the bounds.  Options are available, including reflecting,
wrapping, clipping or randomizing the point, or ignoring the bounds.

The returned bounds object should have an apply(x) method which
transforms the point *x*.
"""
__all__ = ["make_bounds_handler", "Bounds", "ReflectBounds", "ClipBounds",
           "FoldBounds", "RandomBounds", "IgnoreBounds"]

import numpy as np
from numpy import inf, isinf
from . import util
from .compiled import dll
try:
    from numba import njit
except ImportError:
    def njit(*args, **kw):
        return lambda f: f

[docs] def make_bounds_handler(bounds, style='reflect'): """ Return a bounds object which can update the bounds. Bounds handling *style* name is one of:: reflect: reflect off the boundary clip: stop at the boundary fold: wrap values to the other side of the boundary randomize: move to a random point in the bounds none: ignore the bounds With semi-infinite intervals folding and randomizing aren't well defined, and reflection is used instead. With finite intervals the the reflected or folded point may still be outside the bounds (which can happen if the step size is too large), and a random uniform value is used instead. """ if bounds is None: return IgnoreBounds() low, high = bounds # Do boundary handling -- what to do when points fall outside bound style = style.lower() if style == 'reflect': f = ReflectBounds(low, high) elif style == 'clip': f = ClipBounds(low, high) elif style == 'fold': f = FoldBounds(low, high) elif style == 'randomize': f = RandomBounds(low, high) elif style == 'none' or style is None: f = IgnoreBounds() else: raise ValueError("bounds style %s is not valid" % style) return f
[docs] class Bounds(object): """ Base class for all times of bounds objects. """ c_interface = None # type: Callable[[int, int, Any, Any, Any], None] low = None # type: np.ndarray high = None # type: np.ndarray
[docs] @staticmethod def apply(minn, maxn, pop): """Force pop (population) values within bounds""" raise NotImplementedError
def __call__(self, population): """ Force parameter values within bounds for each member of the population (population is expected to be a 2d array of shape (M, N) where - M is the size of the population - N is then number of parameters Returns population for convenience. E.g., y = bounds(x+0) """ if self.c_interface is not None: self.c_interface(len(population), len(self.low), population.ctypes, self.low.ctypes, self.high.ctypes) else: self.apply(self.low, self.high, population) return population
[docs] class ReflectBounds(Bounds): """ Reflect parameter values into bounded region """ c_interface = dll.bounds_reflect if dll else None def __init__(self, low, high): self.low, self.high = [np.ascontiguousarray(v, 'd') for v in (low, high)]
[docs] @staticmethod @njit(cache=True) def apply(minn, maxn, pop): """ Update pop so all values lie within bounds """ for y in pop: # Reflect points which are out of bounds idx = y < minn y[idx] = 2*minn[idx] - y[idx] idx = y > maxn y[idx] = 2*maxn[idx] - y[idx] # Randomize points which are still out of bounds idx = (y < minn) | (y > maxn) y[idx] = minn[idx] + util.rng.rand(sum(idx))*(maxn[idx]-minn[idx])
[docs] class ClipBounds(Bounds): """ Clip values to bounded region """ c_interface = dll.bounds_clip if dll else None def __init__(self, low, high): self.low, self.high = [np.ascontiguousarray(v, 'd') for v in (low, high)]
[docs] @staticmethod @njit(cache=True) def apply(minn, maxn, pop): for y in pop: idx = y < minn y[idx] = minn[idx] idx = y > maxn y[idx] = maxn[idx]
[docs] class FoldBounds(Bounds): """ Wrap values into the bounded region """ c_interface = dll.bounds_fold if dll else None def __init__(self, low, high): self.low, self.high = [np.ascontiguousarray(v, 'd') for v in (low, high)]
[docs] @staticmethod @njit(cache=True) def apply(minn, maxn, pop): for y in pop: # Deal with semi-infinite cases using reflection idx = (y < minn) & isinf(maxn) y[idx] = 2*minn[idx] - y[idx] idx = (y > maxn) & isinf(minn) y[idx] = 2*maxn[idx] - y[idx] # Wrap points which are out of bounds idx = y < minn y[idx] = maxn[idx] - (minn[idx] - y[idx]) idx = y > maxn y[idx] = minn[idx] + (y[idx] - maxn[idx]) # Randomize points which are still out of bounds idx = (y < minn) | (y > maxn) y[idx] = minn[idx] + util.rng.rand(sum(idx))*(maxn[idx]-minn[idx])
[docs] class RandomBounds(Bounds): """ Randomize values into the bounded region """ c_interface = dll.bounds_random if dll else None def __init__(self, low, high): self.low, self.high = [np.ascontiguousarray(v, 'd') for v in (low, high)]
[docs] @staticmethod @njit(cache=True) def apply(minn, maxn, pop): for y in pop: # Deal with semi-infinite cases using reflection idx = (y < minn) & isinf(maxn) y[idx] = 2*minn[idx] - y[idx] idx = (y > maxn) & isinf(minn) y[idx] = 2*maxn[idx] - y[idx] # The remainder are selected uniformly from the bounded region idx = (y < minn) | (y > maxn) y[idx] = minn[idx] + util.rng.rand(sum(idx))*(maxn[idx]-minn[idx])
[docs] class IgnoreBounds(Bounds): """ Leave values outside the bounded region """ c_interface = dll.bounds_ignore if dll else None def __init__(self, low=None, high=None): self.low, self.high = [np.ascontiguousarray(v, 'd') for v in (low, high)]
[docs] @staticmethod def apply(minn, maxn, pop): pass
def test(): """bounds handlers test""" from numpy.linalg import norm from numpy import array bounds = list(zip([5, 10], [-inf, -10], [-5, inf], [-inf, inf])) v = np.ascontiguousarray([[6, -12, 6, -12]], 'd') for t in 'none', 'reflect', 'clip', 'fold', 'randomize': w = make_bounds_handler(bounds, t) assert norm(w(v+0) - v) == 0 v = np.ascontiguousarray([[12, 12, -12, -12]], 'd') for t in 'none', 'reflect', 'clip', 'fold': w = make_bounds_handler(bounds, t) assert norm(w(v.repeat(3, axis=0)) - w(v+0)) == 0 assert norm(make_bounds_handler(bounds, 'none')(v+0) - v) == 0 assert norm(make_bounds_handler(bounds, 'reflect')(v+0) - [8, -32, 2, -12]) == 0 assert norm(make_bounds_handler(bounds, 'clip')(v+0) - [10, -10, -5, -12]) == 0 assert norm(make_bounds_handler(bounds, 'fold')(v+0) - [7, -32, 2, -12]) == 0 w = make_bounds_handler(bounds, 'randomize')(v+0) assert 5 <= w[0,0] <= 10 and w[0,1] == -32 and w[0,2] == 2 and w[0,3] == -12 v = np.ascontiguousarray([[20, 1, 1, 1]], 'd') w = make_bounds_handler(bounds, 'reflect')(v+0) assert 5 <= w[0,0] <= 10 v = np.ascontiguousarray([[20, 1, 1, 1]], 'd') w = make_bounds_handler(bounds, 'fold')(v+0) assert 5 <= w[0,0] <= 10 if __name__ == "__main__": test()