Source code for bumps.bounds

# This program is in the public domain
# Author: Paul Kienzle
"""
Parameter bounds and prior probabilities.

Parameter bounds encompass several features of our optimizers.

First and most trivially they allow for bounded constraints on
parameter values.

Secondly, for parameter values known to follow some distribution,
the bounds encodes a penalty function as the value strays from
its nominal value.  Using a negative log likelihood cost function
on the fit, then this value naturally contributes to the overall
likelihood measure.

Predefined bounds are::

    Unbounded
        range (-inf, inf)
    BoundedBelow
        range (base, inf)
    BoundedAbove
        range (-inf, base)
    Bounded
        range (low, high)
    Normal
        range (-inf, inf) with gaussian probability
    BoundedNormal
        range (low, high) with gaussian probability within
    SoftBounded
        range (low, high) with gaussian probability outside

New bounds can be defined following the abstract base class
interface defined in :class:`Bounds`, or using Distribution(rv)
where rv is a scipy.stats continuous distribution.

For generating bounds given a value, we provide a few helper
functions::

    v +/- d:  pm(x,dx) or pm(x,-dm,+dp) or pm(x,+dp,-dm)
        return (x-dm,x+dm) limited to 2 significant digits
    v +/- p%: pmp(x,p) or pmp(x,-pm,+pp) or pmp(x,+pp,-pm)
        return (x-pm*x/100, x+pp*x/100) limited to 2 sig. digits
    pm_raw(x,dx) or raw_pm(x,-dm,+dp) or raw_pm(x,+dp,-dm)
        return (x-dm,x+dm)
    pmp_raw(x,p) or raw_pmp(x,-pm,+pp) or raw_pmp(x,+pp,-pm)
        return (x-pm*x/100, x+pp*x/100)
    nice_range(lo,hi)
        return (lo,hi) limited to 2 significant digits
"""
from __future__ import division
__all__ = ['pm', 'pmp', 'pm_raw', 'pmp_raw', 'nice_range', 'init_bounds',
           'Bounds', 'Unbounded', 'Bounded', 'BoundedAbove', 'BoundedBelow',
           'Distribution', 'Normal', 'BoundedNormal', 'SoftBounded']

import math
from math import log, log10, sqrt, pi, ceil, floor

from numpy import inf, isinf, isfinite, clip
import numpy.random as RNG
try:
    from scipy.stats import norm as normal_distribution
except ImportError:
    # Normal distribution is an optional dependency.  Leave it as a runtime
    # failure if it doesn't exist.
    pass


[docs] def pm(v, plus, minus=None, limits=None): """ Return the tuple (~v-dv,~v+dv), where ~expr is a 'nice' number near to to the value of expr. For example:: >>> r = pm(0.78421, 0.0023145) >>> print("%g - %g"%r) 0.7818 - 0.7866 If called as pm(value, +dp, -dm) or pm(value, -dm, +dp), return (~v-dm, ~v+dp). """ return nice_range(limited_range(pm_raw(v, plus, minus), limits=limits))
[docs] def pmp(v, plus, minus=None, limits=None): """ Return the tuple (~v-%v,~v+%v), where ~expr is a 'nice' number near to the value of expr. For example:: >>> r = pmp(0.78421, 10) >>> print("%g - %g"%r) 0.7 - 0.87 >>> r = pmp(0.78421, 0.1) >>> print("%g - %g"%r) 0.7834 - 0.785 If called as pmp(value, +pp, -pm) or pmp(value, -pm, +pp), return (~v-pm%v, ~v+pp%v). """ return nice_range(limited_range(pmp_raw(v, plus, minus), limits=limits))
# Generate ranges using x +/- dx or x +/- p%*x
[docs] def pm_raw(v, plus, minus=None): """ Return the tuple [v-dv,v+dv]. If called as pm_raw(value, +dp, -dm) or pm_raw(value, -dm, +dp), return (v-dm, v+dp). """ if minus is None: minus = -plus if plus < minus: plus, minus = minus, plus return v + minus, v + plus
[docs] def pmp_raw(v, plus, minus=None): """ Return the tuple [v-%v,v+%v] If called as pmp_raw(value, +pp, -pm) or pmp_raw(value, -pm, +pp), return (v-pm%v, v+pp%v). """ if minus is None: minus = -plus if plus < minus: plus, minus = minus, plus b1, b2 = v * (1 + 0.01 * minus), v * (1 + 0.01 * plus) return (b1, b2) if v > 0 else (b2, b1)
def limited_range(bounds, limits=None): """ Given a range and limits, fix the endpoints to lie within the range """ if limits is not None: return clip(bounds[0], *limits), clip(bounds[1], *limits) return bounds
[docs] def nice_range(bounds): """ Given a range, return an enclosing range accurate to two digits. """ step = bounds[1] - bounds[0] if step > 0: d = 10 ** (floor(log10(step)) - 1) return floor(bounds[0]/d)*d, ceil(bounds[1]/d)*d else: return bounds
[docs] def init_bounds(v): """ Returns a bounds object of the appropriate type given the arguments. This is a helper factory to simplify the user interface to parameter objects. """ # if it is none, then it is unbounded if v is None: return Unbounded() # if it isn't a tuple, assume it is a bounds type. try: lo, hi = v except TypeError: return v # if it is a tuple, then determine what kind of bounds we have if lo is None: lo = -inf if hi is None: hi = inf # TODO: consider issuing a warning instead of correcting reversed bounds if lo >= hi: lo, hi = hi, lo if isinf(lo) and isinf(hi): return Unbounded() elif isinf(lo): return BoundedAbove(hi) elif isinf(hi): return BoundedBelow(lo) else: return Bounded(lo, hi)
[docs] class Bounds(object): """ Bounds abstract base class. A range is used for several purposes. One is that it transforms parameters between unbounded and bounded forms depending on the needs of the optimizer. Another is that it generates random values in the range for stochastic optimizers, and for initialization. A third is that it returns the likelihood of seeing that particular value for optimizers which use soft constraints. Assuming the cost function that is being optimized is also a probability, then this is an easy way to incorporate information from other sorts of measurements into the model. """ limits = (-inf, inf) # TODO: need derivatives wrt bounds transforms
[docs] def get01(self, x): """ Convert value into [0,1] for optimizers which are bounds constrained. This can also be used as a scale bar to show approximately how close to the end of the range the value is. """
[docs] def put01(self, v): """ Convert [0,1] into value for optimizers which are bounds constrained. """
[docs] def getfull(self, x): """ Convert value into (-inf,inf) for optimizers which are unconstrained. """
[docs] def putfull(self, v): """ Convert (-inf,inf) into value for optimizers which are unconstrained. """
[docs] def random(self, n=1, target=1.0): """ Return a randomly generated valid value. *target* gives some scale independence to the random number generator, allowing the initial value of the parameter to influence the randomly generated value. Otherwise fits without bounds have too large a space to search through. """
[docs] def nllf(self, value): """ Return the negative log likelihood of seeing this value, with likelihood scaled so that the maximum probability is one. For uniform bounds, this either returns zero or inf. For bounds based on a probability distribution, this returns values between zero and inf. The scaling is necessary so that indefinite and semi-definite ranges return a sensible value. The scaling does not affect the likelihood maximization process, though the resulting likelihood is not easily interpreted. """
[docs] def residual(self, value): """ Return the parameter 'residual' in a way that is consistent with residuals in the normal distribution. The primary purpose is to graphically display exceptional values in a way that is familiar to the user. For fitting, the scaled likelihood should be used. To do this, we will match the cumulative density function value with that for N(0,1) and find the corresponding percent point function from the N(0,1) distribution. In this way, for example, a value to the right of 2.275% of the distribution would correspond to a residual of -2, or 2 standard deviations below the mean. For uniform distributions, with all values equally probable, we use a value of +/-4 for values outside the range, and 0 for values inside the range. """
[docs] def start_value(self): """ Return a default starting value if none given. """ return self.put01(0.5)
def __contains__(self, v): return self.limits[0] <= v <= self.limits[1] def __str__(self): limits = tuple(num_format(v) for v in self.limits) return "(%s,%s)" % limits
[docs] def to_dict(self): return dict( type=type(self).__name__, limits=self.limits, )
# CRUFT: python 2.5 doesn't format indefinite numbers properly on windows def num_format(v): """ Number formating which supports inf/nan on windows. """ if isfinite(v): return "%g" % v elif isinf(v): return "inf" if v > 0 else "-inf" else: return "NaN"
[docs] class Unbounded(Bounds): """ Unbounded parameter. The random initial condition is assumed to be between 0 and 1 The probability is uniformly 1/inf everywhere, which means the negative log likelihood of P is inf everywhere. A value inf will interfere with optimization routines, and so we instead choose P == 1 everywhere. """
[docs] def random(self, n=1, target=1.0): scale = target + (target == 0.) return RNG.randn(n)*scale
[docs] def nllf(self, value): return 0
[docs] def residual(self, value): return 0
[docs] def get01(self, x): return _get01_inf(x)
[docs] def put01(self, v): return _put01_inf(v)
[docs] def getfull(self, x): return x
[docs] def putfull(self, v): return v
[docs] class BoundedBelow(Bounds): """ Semidefinite range bounded below. The random initial condition is assumed to be within 1 of the maximum. [base,inf] <-> (-inf,inf) is direct above base+1, -1/(x-base) below [base,inf] <-> [0,1] uses logarithmic compression. Logarithmic compression works by converting sign*m*2^e+base to sign*(e+1023+m), yielding a value in [0,2048]. This can then be converted to a value in [0,1]. Note that the likelihood function is problematic: the true probability of seeing any particular value in the range is infinitesimal, and that is indistinguishable from values outside the range. Instead we say that P = 1 in range, and 0 outside. """ def __init__(self, base): self.limits = (base, inf) self._base = base
[docs] def start_value(self): return self._base + 1
[docs] def random(self, n=1, target=1.): target = max(abs(target), abs(self._base)) scale = target + (target == 0.) return self._base + abs(RNG.randn(n)*scale)
[docs] def nllf(self, value): return 0 if value >= self._base else inf
[docs] def residual(self, value): return 0 if value >= self._base else -4
[docs] def get01(self, x): m, e = math.frexp(x - self._base) if m >= 0 and e <= _E_MAX: v = (e + m) / (2. * _E_MAX) return v else: return 0 if m < 0 else 1
[docs] def put01(self, v): v = v * 2 * _E_MAX e = int(v) m = v - e x = math.ldexp(m, e) + self._base return x
[docs] def getfull(self, x): v = x - self._base return v if v >= 1 else 2 - 1. / v
[docs] def putfull(self, v): x = v if v >= 1 else 1. / (2 - v) return x + self._base
[docs] class BoundedAbove(Bounds): """ Semidefinite range bounded above. [-inf,base] <-> [0,1] uses logarithmic compression [-inf,base] <-> (-inf,inf) is direct below base-1, 1/(base-x) above Logarithmic compression works by converting sign*m*2^e+base to sign*(e+1023+m), yielding a value in [0,2048]. This can then be converted to a value in [0,1]. Note that the likelihood function is problematic: the true probability of seeing any particular value in the range is infinitesimal, and that is indistinguishable from values outside the range. Instead we say that P = 1 in range, and 0 outside. """ def __init__(self, base): self.limits = (-inf, base) self._base = base
[docs] def start_value(self): return self._base - 1
[docs] def random(self, n=1, target=1.0): target = max(abs(self._base), abs(target)) scale = target + (target == 0.) return self._base - abs(RNG.randn(n)*scale)
[docs] def nllf(self, value): return 0 if value <= self._base else inf
[docs] def residual(self, value): return 0 if value <= self._base else 4
[docs] def get01(self, x): m, e = math.frexp(self._base - x) if m >= 0 and e <= _E_MAX: v = (e + m) / (2. * _E_MAX) return 1 - v else: return 1 if m < 0 else 0
[docs] def put01(self, v): v = (1 - v) * 2 * _E_MAX e = int(v) m = v - e x = -(math.ldexp(m, e) - self._base) return x
[docs] def getfull(self, x): v = x - self._base return v if v <= -1 else -2 - 1. / v
[docs] def putfull(self, v): x = v if v <= -1 else -1. / (v + 2) return x + self._base
[docs] class Bounded(Bounds): """ Bounded range. [lo,hi] <-> [0,1] scale is simple linear [lo,hi] <-> (-inf,inf) scale uses exponential expansion While technically the probability of seeing any value within the range is 1/range, for consistency with the semi-infinite ranges and for a more natural mapping between nllf and chisq, we instead set the probability to 0. This choice will not affect the fits. """ def __init__(self, lo, hi): self.limits = (lo, hi) self._nllf_scale = log(hi - lo)
[docs] def random(self, n=1, target=1.0): lo, hi = self.limits #print("= uniform",lo,hi) return RNG.uniform(lo, hi, size=n)
[docs] def nllf(self, value): lo, hi = self.limits return 0 if lo <= value <= hi else inf
# return self._nllf_scale if lo<=value<=hi else inf
[docs] def residual(self, value): lo, hi = self.limits return -4 if lo > value else (4 if hi < value else 0)
[docs] def get01(self, x): lo, hi = self.limits return float(x - lo) / (hi - lo) if hi - lo > 0 else 0
[docs] def put01(self, v): lo, hi = self.limits return (hi - lo) * v + lo
[docs] def getfull(self, x): return _put01_inf(self.get01(x))
[docs] def putfull(self, v): return self.put01(_get01_inf(v))
[docs] class Distribution(Bounds): """ Parameter is pulled from a distribution. *dist* must implement the distribution interface from scipy.stats. In particular, it should define methods rvs, nnlf, cdf and ppf and attributes args and dist.name. """ def __init__(self, dist): self.dist = dist
[docs] def random(self, n=1, target=1.0): return self.dist.rvs(n)
[docs] def nllf(self, value): return -log(self.dist.pdf(value))
[docs] def residual(self, value): return normal_distribution.ppf(self.dist.cdf(value))
[docs] def get01(self, x): return self.dist.cdf(x)
[docs] def put01(self, v): return self.dist.ppf(v)
[docs] def getfull(self, x): return x
[docs] def putfull(self, v): return v
def __getstate__(self): # WARNING: does not preserve and restore seed return self.dist.__class__, self.dist.args, self.dist.kwds def __setstate__(self, state): cls, args, kwds = state self.dist = cls(*args, **kwds) def __str__(self): return "%s(%s)" % (self.dist.dist.name, ",".join(str(s) for s in self.dist.args))
[docs] def to_dict(self): return dict( type=type(self).__name__, limits=self.limits, # TODO: how to handle arbitrary distribution function in save/load? dist=type(self.dist).__name__, )
[docs] class Normal(Distribution): """ Parameter is pulled from a normal distribution. If you have measured a parameter value with some uncertainty (e.g., the film thickness is 35+/-5 according to TEM), then you can use this measurement to restrict the values given to the search, and to penalize choices of this fitting parameter which are different from this value. *mean* is the expected value of the parameter and *std* is the 1-sigma standard deviation. """ def __init__(self, mean=0, std=1): Distribution.__init__(self, normal_distribution(mean, std)) self._nllf_scale = log(sqrt(2 * pi * std ** 2))
[docs] def nllf(self, value): # P(v) = exp(-0.5*(v-mean)**2/std**2)/sqrt(2*pi*std**2) # -log(P(v)) = -(-0.5*(v-mean)**2/std**2 - log( (2*pi*std**2) ** 0.5)) # = 0.5*(v-mean)**2/std**2 + log(2*pi*std**2)/2 mean, std = self.dist.args return 0.5 * ((value-mean)/std)**2 + self._nllf_scale
[docs] def residual(self, value): mean, std = self.dist.args return (value-mean)/std
def __getstate__(self): return self.dist.args # args is mean,std def __setstate__(self, state): mean, std = state self.__init__(mean=mean, std=std)
[docs] class BoundedNormal(Bounds): """ truncated normal bounds """ def __init__(self, mean=0, std=1, limits=(-inf, inf)): self.limits = limits self.mean, self.std = mean, std self._left = normal_distribution.cdf((limits[0]-mean)/std) self._delta = normal_distribution.cdf((limits[1]-mean)/std) - self._left self._nllf_scale = log(sqrt(2 * pi * std ** 2)) + log(self._delta)
[docs] def get01(self, x): """ Convert value into [0,1] for optimizers which are bounds constrained. This can also be used as a scale bar to show approximately how close to the end of the range the value is. """ v = ((normal_distribution.cdf((x-self.mean)/self.std) - self._left) / self._delta) return clip(v, 0, 1)
[docs] def put01(self, v): """ Convert [0,1] into value for optimizers which are bounds constrained. """ x = v * self._delta + self._left return normal_distribution.ppf(x) * self.std + self.mean
[docs] def getfull(self, x): """ Convert value into (-inf,inf) for optimizers which are unconstrained. """ raise NotImplementedError
[docs] def putfull(self, v): """ Convert (-inf,inf) into value for optimizers which are unconstrained. """ raise NotImplementedError
[docs] def random(self, n=1, target=1.0): """ Return a randomly generated valid value, or an array of values """ return self.get01(RNG.rand(n))
[docs] def nllf(self, value): """ Return the negative log likelihood of seeing this value, with likelihood scaled so that the maximum probability is one. """ if value in self: return 0.5 * ((value-self.mean)/self.std)**2 + self._nllf_scale else: return inf
[docs] def residual(self, value): """ Return the parameter 'residual' in a way that is consistent with residuals in the normal distribution. The primary purpose is to graphically display exceptional values in a way that is familiar to the user. For fitting, the scaled likelihood should be used. For the truncated normal distribution, we can just use the normal residuals. """ return (value - self.mean) / self.std
[docs] def start_value(self): """ Return a default starting value if none given. """ return self.put01(0.5)
def __contains__(self, v): return self.limits[0] <= v <= self.limits[1] def __str__(self): vals = ( self.limits[0], self.limits[1], self.mean, self.std, ) return "(%s,%s), norm(%s,%s)" % tuple(num_format(v) for v in vals)
[docs] class SoftBounded(Bounds): """ Parameter is pulled from a stretched normal distribution. This is like a rectangular distribution, but with gaussian tails. The intent of this distribution is for soft constraints on the values. As such, the random generator will return values like the rectangular distribution, but the likelihood will return finite values based on the distance from the from the bounds rather than returning infinity. Note that for bounds constrained optimizers which force the value into the range [0,1] for each parameter we don't need to use soft constraints, and this acts just like the rectangular distribution. """ def __init__(self, lo, hi, std=None): self._lo, self._hi, self._std = lo, hi, std self._nllf_scale = log(hi - lo + sqrt(2 * pi * std))
[docs] def random(self, n=1, target=1.0): return RNG.uniform(self._lo, self._hi, size=n)
[docs] def nllf(self, value): # To turn f(x) = 1 if x in [lo,hi] else G(tail) # into a probability p, we need to normalize by \int{f(x)dx}, # which is just hi-lo + sqrt(2*pi*std**2). if value < self._lo: z = self._lo - value elif value > self._hi: z = value - self._hi else: z = 0 return (z / self._std) ** 2 / 2 + self._nllf_scale
[docs] def residual(self, value): if value < self._lo: z = self._lo - value elif value > self._hi: z = value - self._hi else: z = 0 return z / self._std
[docs] def get01(self, x): v = float(x - self._lo) / (self._hi - self._lo) return v if 0 <= v <= 1 else (0 if v < 0 else 1)
[docs] def put01(self, v): return v * (self._hi - self._lo) + self._lo
[docs] def getfull(self, x): return x
[docs] def putfull(self, v): return v
def __str__(self): return "box_norm(%g,%g,sigma=%g)" % (self._lo, self._hi, self._std)
_E_MIN = -1023 _E_MAX = 1024 def _get01_inf(x): """ Convert a floating point number to a value in [0,1]. The value sign*m*2^e to sign*(e+1023+m), yielding a value in [-2048,2048]. This can then be converted to a value in [0,1]. Sort order is preserved. At least 14 bits of precision are lost from the 53 bit mantissa. """ # Arctan alternative # Arctan is approximately linear in (-0.5, 0.5), but the # transform is only useful up to (-10**15,10**15). # return atan(x)/pi + 0.5 m, e = math.frexp(x) s = math.copysign(1.0, m) v = (e - _E_MIN + m * s) * s v = v / (4 * _E_MAX) + 0.5 v = 0 if _E_MIN > e else (1 if _E_MAX < e else v) return v def _put01_inf(v): """ Convert a value in [0,1] to a full floating point number. Sort order is preserved. Reverses :func:`_get01_inf`, but with fewer bits of precision. """ # Arctan alternative # return tan(pi*(v-0.5)) v = (v - 0.5) * 4 * _E_MAX s = math.copysign(1., v) v *= s e = int(v) m = v - e x = math.ldexp(s * m, e + _E_MIN) # print "< x,e,m,s,v",x,e+_e_min,s*m,s,v return x